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License Information for Reinforcement Learning (EE-568)

> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

> Non-Commercial
> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the
work for commercial purposes — unless they get the licensor’s permission.
> Share Alike

> The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor's work.

> Full Text of the License
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Recap: Overview of reinforcement learning approaches

Value-based RL (Critic-only)

o Learn the optimal value functions .
V* Q* Value-based fe Policy-based
b

o Algorithms: Monte Carlo, SARSA,
Q-learning, etc.

Model-based

o Use temporal difference (low
variance)

o Does not scale to large action spaces

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch

Policy-based RL (Actor-only)

o Learn the optimal policy via gradient
methods

o Algorithms: PG, NPG, TRPO, PPO,
etc.

o Scales to large or continuous action
spaces

o High variance, sample inefficiency
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Actor-critic (AC) methods

o AC methods aim at combining the advantages of actor-only methods and critic-only methods.

o The actor uses the policy gradient to update the learning policy.

Value

state Function

action

o The critic uses TD learning to estimate the value function.

reward

—‘ Environment i—4

Interaction of Actor-critic [29].
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Actor-critic methods

o Actor-critic algorithms follow an approximate policy gradient:

1
VoJ(mg) = EESNAZG I:Ea~7r9(<|5) [Qu(s,a)Vglogmg(a | s)]] .
1
L=~

o Actor: adjust the policy parameter 6 using policy gradient using the value function estimated by the critic.

VoJ(mg) ~ B, amo [Barry(1s) [Aw(s,0) Vo logmo(a | )] -

o Critic: update the parameter w to estimate action-value or advantage function.

Qu(s,a) =~ Q™ (s,a)
Aw(s,a) = Q70 (s,a) — V™0 (s)
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Bias in actor-critic methods

o Recall action value expression of policy gradient

1

VoJ(mg) = T

ESNA:" [anm(.p) [Q™ (s,a) Vg logmg(a | 5)]] .

o Policy gradient estimators used by actor-critic algorithms:
N 1
VoJ(mg) = ﬁEsﬂﬁg [anﬂg(-|s) [Qu(s,a)Vglogmg(a | 5)]] .

o Approximating the policy gradient using value function approximation ., could introduce bias.

o Luckily, if the value function approximation Q. is chosen carefully, one may avoid such bias.
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Compatible function approximation theorem

Compatible function approximation theorem [30]
Suppose the following two conditions are satisfied:

o Value function approximation at w* is compatible to the policy, i.e.,
Vwa* (S,CL) = VO logﬂ'g(a | S)'
o Value function parameter w* minimizes the mean-squared error, i.e.,

min B, ymo o 10 [(Qu(s,@) — Q70 (s,0))%].

w
Then the policy gradient using critic Q. (s, a) is exact:
1
VelJ(0) = EESNAZQJLNﬂ_e("S)[ve log mp(a | $)Quw=* (s,a)].
Remarks: o Proof follows immediately from first-order optimality condition.

o Example: Qu(s,a) = Vglogmg(a|s)Tw.

ILHELI]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 7/ 44



Variant I: Online action-value actor-critic

Online Action-Value Actor-critic Algorithm

Initialize Op, wo, state sg ~ p, ag ~ g, (- | s0)-

for each step of the episode t =0, ...,T do
Obtain (r¢, s¢41,a¢4+1) from mg, .
Compute policy gradient estimator: Vg J(mp,) = Qu, (st, at) Vo logmg, (at | st).
Actor update 8: 641 = 0; + Vo J(mp, ).
Compute temporal difference: 6¢ = 7t + YQuw; (St+1, @t +1) — Quy (8¢, at).
Critic update: w41 = wt — B0tV Quy (St, at).

end for

Remarks: o Uses temporal difference to estimate the value function Q7.

o Examples for Q. : linear value function approximation Q. (s,a) = é(s,a) w.
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Variant IlI: Advantage actor-critic

Advantage Actor-critic (A2C)

Initialize 8g, wo, state sop ~ p.

for each step of the episode t =0, ...,T do
Take action a¢ ~ g, (- | s¢), obtain (7¢, s¢41).
Estimate advantage function: §; = r¢ + YV, (St4+1) — Vi, (st)-
Compute policy gradient estimator: ﬁgJ(ﬂ'gt) = 0t Vg logmg, (at | st).
Actor update: 0yy1 = 6 + atﬁgJ(frgt).
Critic update: wi4+1 = w¢ — B0t Vi Vi, (St)-

end for

Remarks: o Use V,,(s) to approximate V™ (s), for instance V¥ (s) =~ ¢(s) " w.
o Use one step lookahead to estimate Q™0 (s¢, at) = r(st,at) + YV ™0 (S¢41).

o Use advantage function to approximate the policy gradient.
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Various actor-critic extensions

o Natural actor-critic [21]: use TRPO[26] or NPG[12] to update the actor

o Actor-critic with generalized advantage estimator [27]: generalize advantage function with TD(\)

AF(s4,a1) = r(st,a) + (61, a8401) 4 - - + 7V (544%) — Vo (s¢)

. oo ~
AGAB (54 a4) = (1 — /\)Z A TLAR (51, a2)
k=1

o Soft actor-critic [9]: use entropy regularization in the objective to improve exploration

max E Z'ytr(st, at) + A - H(m(:|st)) | , where H(m(:[s)) = Equr(.|s)[—logm(als)]
t=0
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Convergence of actor-critic methods

Remarks: o There is an asymptotic analysis of two time-scale actor-critic methods (i.e., lim¢— o0 % =0)
3, 13].

o The proof is based on two-time-scale stochastic approximation and ODE analysis.
o Finite-sample analyses of actor-critic methods (tabular or LFA) have been studied very recently.
o This work is based on the bilevel optimization perspective; see e.g., [38].
o Indeed, actor-critic algorithms can be formulated as bilevel optimization:
mein F(9) = f(0,w*(0)), (Upper level)

s.t. w*(0) € argmin £(0,w). (Lower level)
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Deep reinforcement learning = DL + RL

o Tabular methods and linear function approximation are insufficient for large-scale RL applications.

o Using neural networks seems to be a must.

Value-based Critic | Policy-based
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Neural networks
o Nested composition of (learnable) linear transformation with (fixed) nonlinear activation functions

o Example: a single-layer neural network (shallow neural network)

m=5

Activation function o(-)
o Identity: o(u) =u

o Sigmoid: o(u) = m

o Tanh: o(u) = tanh(u)

o Rectified linear unit (ReLU): o(u) = max(0, w)

© oo

Figure: Networks of increasing width
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Deep neural networks

o More hidden layers, different activation functions, more general graph structure ....

Feed forward network Convolutional network

Residual network Recurrent network
s [y vz e
! ] <t—1> 1 <t> ! <thl>
x | — @y a<0> || | - ... — e —_— ..
i 1 1 1
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Why neural networks?

o Universal approximation:
> Any continuous function on a compact domain can be (uniformly) approximated to arbitrary accuracy
> A single-hidden layer neural network suffices with a non-polynomial activation function.
> Classical references include [4, 11, 1].

> However, the number of neurons can be extremely large to approximate any continuous function.

o Benefits of depth:
> A deep network cannot be approximated by a reasonably-sized shallow network [39]
> A function with O(L?) layers and width 2 requires width O(2%) to approximate with O(L) layers [31].

> For more refined depth separation results see [24].
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Example: ATARI network architecture

Convglution Convglution Fully cgnnected Fully cgnnected
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Figure: ATARI Network Architecture for Q(s, a): History of frames as input. One output per action. [18]
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Challenges with training neural networks in RL

o Deadly triad (i.e., divergence when combining function approximation, bootstrapping, and off-policy learning)
o Non iid data

o Sample inefficiency

o High variance

o Overfitting

o Saddle points

O ...
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Common fixes or RL tricks

o Better data: e.g., experience replay (mix online data and a buffer from past experience)
> Reduce correlation, allow mini-batch update

o Better objective: e.g., use entropy regularization
> Improve optimization landscape, encourage exploration

o Better optimizers: e.g., adaptive SGD such as Adam and RMSProp
> Adaptive learning rates

o Better estimation: e.g., Use eligibility traces, target works
> Reduce overestimation bias, balance bias-variance tradeoff

o Better sampling: e.g., use prioritized replay (sample based on priority)
> Prioritize transitions on which we can learn much

o Better implementation: e.g., parallel implementation (multithreading of CPU)
> Speed up training, reduce correlation, allow better exploration

o Better architectures: e.g. dueling networks

> Encode inductive biases that are good for RL
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Value-based DRL

o ldea: Use neural networks for value function approximation

o Recall Q-learning:

Q Learning
Q(st,at) + Q(st,ar) + arre +ymaxe Q(st+1,a) — Q(st, ar)]

Q@-learning with function approximation

Wil — Wi + ag[re + ymaxq Quy (St+1,a) — Quy (St, )]V Qu, (st, at)

Remarks: o Note that Q-learning is not an unbiased stochastic gradient descent method.
o Naive deep Q-learning could diverge due to sample correlation and moving targets.
o Deep Q-networks [18]: combine several techniques for stabilizing Q-learning.
> Experience replay (better data efficiency and make data more stationary).
> Target networks (prevent target objective from changing too fast).
o Experience replay (better data efficiency and make data more stationary).

o Target networks (prevent target objective from changing too fast).
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Deep Q-Networks (DQN)
o Main idea: minimize the following mean-square error by SGD (or adaptive SGD)
2
min L (w) = Eg g 5D (r + v max Q(s',a’;w™) — Q(s, a;w))

o The target parameter w™ is held fixed and updated periodically

cess 2
process 1: data collection current ta{)ég{ (::;)datc target
parameters parameters
w wo

(s,a,s,r) o
dataset of transitions

EC -

7(als) (e.g., e-greedy) evict old data

Figure: A more general view of DQN. Source: https://zhuanlan.zhihu.com/p/468385820
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https://zhuanlan.zhihu.com/p/468385820

DQN in playing Atari games [18]

Figure: Five Atari 2600 Games: Pong, Breakout,

Space Invaders, Seaquest, Beam Rider

B. Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S.Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 -3 18900 28010 3690
Figure: Average total reward for a fixed number of steps.
o DQN source code: https://github.com/deepmind/dqn
Slide 21/ 44
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https://github.com/deepmind/dqn

DQN extensions |

o Double DQN [33] uses separate networks to select best action

o It then evaluates best action to reduce overestimation bias

minL (w) = Esqronp || 7+7Q(s" argmax Q(s’, a'sw);w™) — Q(s, a3 w)
w (l/

Alien Space Invaders Time Pilot Zaxxon
2 20 2.5
% 8 QN estimate
g 8 2.0 6
2 15
O 6 1.5 4
) M | ouble DQN estimate
=10 1.0 2
< ouble DQN true value
> 4 V 0 DQN true value

0 50 100 150 200 O 50 100 150 200 O 50 100 150 200 O 50 100 150 200
Training steps (in millions)

Figure: Value estimates by DQN (orange) and Double DQN (blue) on Atari games. The straight horizontal lines are computed
by running the corresponding agents after learning concluded, and averaging the actual discounted return obtained from each

visited state.
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DQN extensions Il

o DQN with prioritized experience replay [25]:
Prioritize transitions in proportion to the absolute
Bellman error

p X

gk Q(s' ') — Qs asw)|

<SI’AI’R Sr+|’p1>

1412

<St+l ’A1+l 7R1+2 ’Sl+2 ’pH—I >

S A R ‘;

t P,

< 429240422 4391430 P42 >
+ 14

< 432 432 44 01440 t+3>

o Dueling DQN [35]: Split Q-networks into two
streams to estimate value function and advantage
function

Qs,a5w, o, 8) = V(s;w, B) + A(s, a;w, )
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DQN mega extension

o Can these extensions be combined? Yes, Rainbow [10]!

Median human-normalized score

200%

100%

0%

DQN
DDQN
Prioritized DDQN
Dueling DDQN
A3C

Distributional DQN
Noisy DQN
Rainbow

Millions of frames
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The big zoo of DQN

— Rainbow
— 1N
— QR-DQN
Cs1
200% — prioritized DQN r
) g — Double DON
Directory Paper S DON o
s
. . g
dan Human Level Control Through Deep Reinforcement Learning gﬂ
£
double_q Deep Reinforcement Learning with Double Q-learning §
<
prioritized Prioritized Experience Replay ;g 100% [
c51 A Distributional Perspective on Reinforcement Learning &
K
g
qrdgn Distributional Reinforcement Learning with Quantile Regression =
rainbow Rainbow: Combining Impi its in Deep Reil Learning
ign Implicit Quantile Networks for Distributional Reinforcement Learning
0% T T T
o 50 150 200

100
Frame (millions)
Plot of median human-normalized score over all 57

Atari games for each agent

o Source code: https://github.com/deepmind/dqn_zoo
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https://github.com/deepmind/dqn_zoo

Policy-based/Actor-critic DRL

o Combine the actor-critic approach with Deep Q Network

> Asynchronous advantage actor-critic (A3C)) [17]

> Soft actor critic (SAC) [9]

> Deep deterministic policy gradient (DDPG) [16]: continuous control
> Twin delayed DDPG (TD3) [7]: continuous control

>
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A3C [17]

o Idea: advantage actor-critic

Beamrider

16000 600
— DQN —]
14000 — 1.step Q —
12000, — L'Step SARSA 500 =
—— n-step Q 400
10000 A3C
o L
S 8000 300
@ 774 @
6000 7 200
4000
2000 100
0

0 2 4 6 8
Training time (hours)

0
10 12 14 0o 2

+ deep Q-network + asynchronous implementation

Breakout

30 Pong 12000 Q*bert
DON — DON
1-step Q — 1stepQ
1-step SARSA 2 0000~ 1 ctep SARSA
n-step Q n-step Q
A3C 10 8000 asc
o 2 2
0 S 6000 S
@ & &
-10 BOH 4000
— 1stepQ
— 1-st
2 step SARSA
—— n-step Q
A3C =
-30 0
4 6 8 10 12 14 02 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Training time (hours) Training time (hours) Training time (hours)

1600

Space Invaders
DON

1400 — 1.stepQ
1200

1000

800
600
400
200

0
0

£

2

1-step SARSA
n-step Q
A3C

4 6 8 10 12 14
Training time (hours)

Figure: Comparison for DQN and A3C on five Atari 2600 games. 1-step Q means asynchronous one-step Q-learning.

pfl

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch

Slide 27/ 44

EPFL



DDPG [16] and TD3 [7]

o DDPG: deterministic policy gradient + deep Q-network
o Select action a ~ u(s;8) +N(0,0?) (add noise to enhance exploration)
o Policy update: Vg J(0) = % ZZ VaQu(si, pu(si;0))Vou(si; 0)

o TD3: DDPG + clipped action exploration + delayed policy update + pessimistic double Q-learning
> Select action a ~ pu(s;0) + ¢, € ~ clip(N(0, 02), —c, c)

> Delayed policy update: update critic more frequent than policy

== TD3 == DDPG == our DDPG == PPO == TRPO = ACKTR SAC

3500 5000

3000
2500
2000
1500
1000

4000
3000

2000

Average Return

1000

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Time steps (166) Time steps (1e6) Time steps (1e6) Time steps (1e6)
(a) HalfCheetah-v1 (b) Hopper-v1 (c) Walker2d-v1 (d) Ant-v1

Figure: Learning curves for the OpenAl gym continuous control tasks.
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Summary

o Deep Value-based Methods o Deep Policy-based/Actor-critic Methods
> DQN > TRPO
» Double DQN > PPO
> Dueling DQN > A3C
> DQN with prioritized experience replay > SAC
> Rainbow » DDPG/TD3
> >
Question: So, which one should we choose in practice? when do they work well?
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Deep RL resources

o OpenAl Spinning up: https://spinningup.openai.com/

o The awesome list of deep RL (libraries and tutorials): https://github.com/kengz/awesome-deep-rl
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Reinforcement learning

actions/decisions Environment

rewards

o Environment: Markov Decision Process (MDP) M = (S, A, T,~, u,r)

o Agent: Parameterized deterministic policy mp : S — A, where 8 € ©

Reinforcement learning (RL) game
At time step t = 0: Sp ~ p(+)
fort=1,2,... do:
agent observes the environment's state Sy € S
agent chooses an action A; = my(S¢) € A
agent receives a reward R¢y1 = (S, At)
agent finds itself in a new state Syy1 ~ T'(- | S¢, A¢)
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Exploration vs. exploitation in RL

o Challenge: Exploration vs. exploitation!

state reward action
. A,

i Rt

§ S —

Environment
o Objective (non-concave): maxgce J(0) := E Z:il IRy ‘ 7'('9,M:|

> The environment only reveals the rewards after actions
> Exploitation: Maximize objective by choosing the appropriate action

> Exploration: Gather information on other actions
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An optimization interpretation

o Objective (non-concave): maxgce J(0) := E 221 IRy 7T9,./Vl:|
o Exploitation: Progress in the gradient direction
Or+1 «— 6:+ T]tVQ/JTGt)
o Exploration: Add stochasticity while collecting the episodes
> noise injection in the action space [28, 16]
a = me(s) + N(0,021)
> noise injection in the parameter space [23]

6=0+N(0,0%0)
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Reinforcement learning with Langevin dynamics |

o Explore via an infinite dimensional concave-problem (linear in p):
maximize E [J(6)]
pEM(®)  O~p
o M(O) is the (infinite dimensional) space of all probability distributions on ©.

o p* = argmax, GE [J(0)] is a delta measure centered at * = argmaxg J(0).
~p
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Reinforcement learning with Langevin dynamics Il

o Exploit via a well-known entropy smoothing trick:
maximize E [J(0)]+ BH
naximiz vap[ (0)] + BH(p)
> H(p) = OE [—logp(0)] is the entropy of the distribution p.
~p

> the optimal solution takes the form pg(a) o exp (%J(G))

o Our proposal for explore-exploit

> Use Langevin dynamics [36] to draw samples from pg(e)

> Use homotopy on the smoothing parameter (8
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Learning robust policies

o Why robust RL? In short: Generalization under environmental changes

> upshots: self-driving car in varying environmental conditions
> trends: from simple parametric models to super expressive neural networks

> challenges: computational costs as well as the difficulty of training

o Highlight: Robust Adversarial Reinforcement Learning (RARL) [22]

> train an agent neural net
> train an adversary neural net

> setup a minimax game between the two

o Several variants exist [20, 37, 14, 6, 34, 15].
o Action Robust RL [32].
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Two-Player Zero-Sum Markov Game

o Players:
o Environment: Markov Decision Process (MDP) M = (S, A, A, T, ~,7, )
o Agent: parameterized deterministic policy mp : S — A, where 0 € ©

o Adversary: parameterized deterministic policy v, : S — A, where w € Q

Two-Player Zero-Sum Markov Game
At time step t = 0: Sg ~ p(-)
fort=1,2,... do:
both players observe the environment's state Sy € S
both players choose the actions A; = my(St) € A, and A = Vo (St) € A
the agent gets a reward Ryy1 = 7(S¢, At At) while the adversary gets —R;41
both players find themselves in a new state Sy41 ~ T(- | S¢, A¢, Ay)

o Performance objective:

Y, Ve, M

o0
max min J(0,w) = E Z'ytilRt
€O we2

t=1
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Robust Adversarial Reinforcement Learning (RARL)

o A natural pure strategy-based minimax objective

max min J(6,w).
0cO we

> . an agent neural net
> w: an adversary neural net

> highly non-concave/non-convex objective

o Theoretical challenges

> a saddle point might NOT exist [5]

> no provably convergent algorithm

o Practical challenges

> the simple (alternating) SGD does NOT work well in practice

> adaptive methods (Adam, RMSProp,...) highly unstable, heavy tuning
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RARL: From pure to mixed Nash Equilibrium

o Objective of RARL is a pure strategy formulation:

max min J(6,w).
€O we

o A new objective of RARL: Our mixed strategy proposal via game theory

max min = Ego,Eug [J(0,w)].
PEM(O) gEM(Q) O~p q[J(0,w)]

where M(Z) = {all (regular) probability measures on Z}.

o Existence of NE (p*, ¢*): Glicksberg's existence theorem [8].
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A re-thinking of RARL via the mixed Nash equilibrium

o Upshot: Our mixed Nash Equilibrium proposal = bi-linear matrix games

max min
pPEM(O) geM(Q2)

max min  (p,Gq)
pPEM(O) ge M(Q2)

»> Caveat: Infinite dimensions!!!

o Key ingredients moving forward
> (p,hy = fhdp for a measure p and function h
> the linear operator G and its adjoint G':

(Gq)(9)
(G'p)(w)

where G : M(Q) — F(0), and GT : M(©) — F(Q).

Eung[J(0,0)]
Eop [J(0,w)],
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Training phase

o We use the following special adversary with o = 0.1 (Noisy Action Robust MDP):

Noisy Action Robust MDP Game
fort=1,2,... do:

both players observe the environment's state Sy € S

both players choose the actions A; = u(St) € A, and A, = v(S) € A

the resulting action A; = (1 — a)A¢ + A} is executed in the environment M
the agent gets a reward Ry 1 = (S, At) while the adversary gets —R;41

both players find themselves in a new state Siy1

Remarks: o We train the policy based on specific environment parameters

o For instance, standard relative mass variables in OpenAl gym.
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Testing phase

o Robustness under Adversarial Disturbances (x-axis of the heatmap):

o measure performance in the presence of an adversarial disturbance.

o Robustness to Test Conditions (y-axis of the heatmap):

o measure performance with respect to varying test conditions.

IHHEL]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 42/ 44



Experimental evaluation via MuJoCo

HalfCheetah-v2
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Next week!

o Imitation Learning!
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Supplementary: Entropic mirror descent iterates in infinite dimension

o Negative Shannon entropy and its Fenchel dual: (dz :=Lebesgue)
o ®(p) = [plog 2.
o ®*(h) :logfeh.

o d® and d®*: Fréchet derivatives.!

Theorem (Infinite-dimensional mirror descent, informal)

For a learning rate ), a probability measure p, and an arbitrary function h, we can equivalently define
e~ hdp

fe—”hdp.

Moreover, most the essential ingredients in the analysis of finite-dimensional prox methods can be generalized to
infinite dimension.

p+ =MD(p,h) = py=d®* (d®(p) —nh)= dpy =

o Continuous analog of the entropic mirror descent [2]

o Mirror-prox also possible [19]

LUnder mild regularity conditions on the measure/function.
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Supplementary: Entropic mirror descent in infinite dimension: rates

o Algorithm:

Algorithm 1 Infinite-Dimensional Entropic Mirror Descent

Input: Initial distributions p1, ¢, and learning rate n
fort=1,2,...,T—1do
pi+1 =MDy, (pr, —Gqr)

G141 =MDy, (p, GTPt)
end for

_ T _ T
Output: pr = £ >, prand gr = 7>, &

Theorem (Convergence Rates)
Let &(p) = [ dplog 92 Then
1. Entropic MD = O(T’%)_NE_

2. If only stochastic derivatives (Gip and —Gq) are available, then Entropic MD => O(T*%)—NE in
expectation.
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